奇快文学>科幻小说>走进不科学徐云>第二百七十六章 提前被发现的阴极射线!(7.8K)
  数学。

  作为人类历史上影响最深远的科目之一,它的成型时间甚至要远早于物理。

  无论是东方还是西方,早在数千年前,便有大量与之有关的文献或者著作。

  这其实是有生活习惯导致的必然。

  比如一位农夫。

  他在看到太阳的时候或许会好奇太阳为何朝升夜落,或许会好奇为何冬暖夏凉,但也仅仅是好奇而已,不可能也没能力深入研究。

  但数学却不同。

  你田亩的收成、买卖货物的价格找零,这都涉及到了数学的知识。

  基础土壤一多,体系的形成自然也就快了。

  在自然科学设立之前,欧洲的教育体系叫做古典...或者说经典文学体系。

  而这个挂着‘文学’的体系的核心科目,便是数学。

  因此在13-17世纪,很多数学家往往都兼具着哲学家或者艺术家的身份。

  例如笛卡尔、伯努利等等......

  这也是为什么很多早期数学模型,经常会和小提琴啊、钢琴挂钩的原因。

  数学这门科目历史悠长,各大派别山门无数,因此无可避免的,数学界也经常会搞出各种各样的排名。

  这些所谓的十大或者***数学家排名同样争议颇多,很难有个定论。

  但另一方面。

  就像物理学的小牛老爱神仙打架、老三小麦稳如泰山一样。

  数学界也有四個人物的历史地位永远稳居前四。

  他们分别是:

  阿基米德、小牛、高斯和欧拉,偶尔还会加个黎曼——不过出现的次数不多。

  反正四大天王有五个,很正常对吧?

  总而言之。

  这几人是妥妥的第一梯队,其中阿基米德因为有时代加成,大多数时候会被尊为数学史上的第一人。

  他们之下就是柯西、庞加莱、费马、毕达哥拉斯、拉格朗日的这些诸雄争霸了。

  而高斯作为能够与阿基米德并列的四大天王之一,其能力不言而喻。

  他留下了大量高斯开头的定理,折磨了无数后世的大学生,不知多少人吊死在了那颗刻着高斯名字的高树上.....

  当年徐云在读大物的时候导师还说过一句玩笑话,至今印象很深:

  如果考试的时候你证明用了一条定理但忘了叫啥,但证明题目又叫你必须给出它的名字,那么高斯显然一直都是个好答案。

  眼下数学系那边算力不足,徐云自然就将心思投放到了外援身上。

  而既然要找外援,显然就应该去找能力最强的大佬抱大腿。

  如今是1850年,阿基米德早已故去近2000年,欧拉在七十多年前就病逝了。

  至于小牛嘛........

  徐云则刚给他上过坟哩。

  目前活在世上的大佬只剩下了天王高斯,以及修至小天王大圆满之境,可受天王一击而不死的半步天王黎曼。

  同时很凑巧的是,这两位都是德国人。

  因此抱着做都做了的想法,徐云干脆拔下了套...咳咳,干脆把德国的数学精英们一起打包了过来。

  当然了。

  徐云此次向高斯求助,并不是单纯冲着高斯的名气去的。

  而是因为高斯在天体计算中有过非常非常丰富的经验。

  这个经验叫做谷神星。

  谷神星于1801年被意大利天文学家皮亚齐发现,皮亚齐希腊神话中的“丰收女神”对它命名,称为谷神星。

  但后来皮亚齐因病耽误了观测,从而失去了这颗小行星的轨迹。

  所以无奈之下。

  皮亚齐将自己以前观测的数据发表出来,希望全球的天文学家一起寻找。

  收到消息后,高斯通过以前3次的观测数据,便轻松计算出了谷神星的运行轨迹。

  奥地利天文学家奥尔贝斯根据高斯计算出的轨道,最终成功地发现了谷神星。

  这种方法还被高斯发表在了其著作《天体运动论》中,类似的还有智神星。

  虽然如今高斯已经73岁高龄,并且只有五年的寿命,看上去已经走到了人生末年。

  但根据后世的大量文献记载。

  高斯这人的晚年与老苏有些类似,属于前一段还显得很活跃,但短期内忽然就恶化的情况。

  他在1851年9月的时候还计算出了外海王星天体的轨迹,并且全程独立完成,要直到1853年10月左右才会开始极具恶化。

  因此请他来一趟还是不难的。

  总而言之。

  有了这么多位数学大佬来做工具人,冥王星的观测过程若还有意外发生,徐云当场就把那柄斧头吃掉!

  这次真吃!

  办公室里。

  看着面前密密麻麻的名单,法拉第不由与韦伯对视了一眼。

  两人都从彼此眼中看出了相同的想法:

  这活儿能接!

  先前提及过。

  高斯是法拉第的狂热书友,历史上他为了追更法拉第,甚至还亲自上门寄过刀片.....

  而韦伯呢,则是高斯仅有的两位好基友之一。

  韦伯和高斯的关系好到了什么地步呢?

  他俩一起发明了世界第一个电话电报系统,一起发明了地磁仪,一起绘制出了世界第一张地球磁场图。

  为了纪念他们的这段成就。

  莱比锡公园在后世还立了一座韦伯和高斯的雕像。

  二人雕像中韦伯立于地面,高斯则坐在砷石椅上,二人谈笑风生,边上五十米就是公园靶场......

  后来高斯甚至还想把女儿嫁给韦伯,在高斯的自传中还写过两人互相搓背的事儿。

  当年徐云读研的时候,组内还有一个老污婆自称发现了秘密:

  高斯在互相搓背后就把女儿嫁给了其他人,说明韦伯很可能某些部位要低于平均值.......

  后来那位老污婆嫁了个好老公,早些年聚会的时候文静的不行,丝毫不见当初男人婆的模样了。

  视线再回归现实。

  因此在眼神交流过后。

  法拉第很是痛快的一点头,对徐云道:

  “没问题,罗峰同学,晚饭后我就撰写电报给弗里德里希。”

  “名单上的人我不敢说全部邀请过来,但至少六成...不,七成还是有把握的。”

  徐云很是理解的点了点头。

  实话实说。

  他也没指望法拉第能把这些人全请过来。

  毕竟他只知道这些人的名字、能肯定对方还没死并且状态不错,但处境这块就不怎么清楚了。

  说不定人家收到电报的时候在忙着项目,又或者最近恰好感冒发烧,你总不能逼着对方拖病赶来吧?

  按照徐云的预计。

  最终到场的能有十个人,这次观测就没什么问题了。

  超过十五个那就是稳得不行,可以直接双手离开键盘的那种。

  随后法拉第将写有名字的纸张放回桌上,用一本书将其压住,又对徐云道:

  “罗峰同学,那么你之前所说的操作流程......”

  徐云朝他展颜一笑,很是识趣的道:

  “您放心吧,法拉第教授,我现在就把示意图绘制给您。”

  说完他拿起笔,沉吟片刻。

  在桌上画起了示意图。

  只见他先画出了一根长管的草图,同时对法拉第问道:

  “法拉第先生,您还记得您当年制作真空管的真空度吗?”

  法拉第点点头,脸上露出一丝憾色:

  “当然记得,数值是百分之七。”

  法拉第当初做真空管实验的灵感来自于豪克斯比的方案,他们的目的是为了对良卡德发现的现象进行研究:

  1676年的时候,良卡德在晚上移动水银气压计时,发现了“水银荧光”现象。

  也就是当气压计中水银振荡时,在托里拆利真空部位会发出闪光。

  可惜法拉第当时能制作的真空管只有7%个大气压,因此他只能无奈放弃这个实验——这也就是此前提及过的法拉第暗区的由来。

  随后徐云没再接话,低头又在纸上画了几分钟。

  很快。

  一个结构更为复杂的长管出现了:

  这根长管前粗后窄,尾部连着一个黑色的区域——徐云在一旁的备注是白金电极,中通水银,外部则缠绕着鲁姆科夫线圈。

  当然了。

  徐云印象中鲁姆科夫线圈应该就出现在1850年前后,但不确定是在具体几月份。

  所以为了避免一些没必要的麻烦,他没有标注鲁姆科夫线圈的名字,同时还对一些外阻进行了修改。

  看到这里。

  想必有部分同学已经猜出来了。

  没错。

  徐云这次拿出来的,正是加强的盖斯勒管!

  1850年能够做到的真空度大概是千分之六大气压,也就是比法拉第当初的7%精密十倍左右。

  但实话实说。

  这种真空度在实验上还是有些不够看,很容易出现观测上的误差。

  所以在仔细思考过后,徐云此遭直接拿出了一个大杀器:

  由普吕克的学生希托夫改造出的盖斯勒管。

  这根盖斯勒管的魔改版本可以达到十万分之一个大气压,也就是比法拉第当初精细600倍!

  虽然与后世大型强子对撞机动辄负12负13次方的真空度相比依旧是个弟弟,但在这年头去也足够法拉第等人鼓捣了。

  随后徐云抬起头,指着示意图对法拉第问道:

  “法拉第先生,这根导管的原理您可以理解吗?”

  法拉第上前看了几眼,顿时眼前一亮:

  “好思路,铂电极加上水银抽取,从上方排出空气.....哎呀,我怎么就没想到呢!”

  徐云看了法拉第一眼,没有说话。

  物理学.....或者说理科实验,有些时候就是这么现实。

  哪怕你是业内大佬,历史上能够排到前几的某某理论奠基人,有的问题想不到就是想不到。

  法拉第其实还算好的了。

  虽然从后世角度看来,他没发现电磁波是件憾事,但法拉第本人对此是没有概念的。

  从自身角度来说。

  他的人生可以算是功德圆满,不留遗憾。

  有些倒霉蛋那才是真惨,可能研究了一辈子的问题被二十多岁的小年轻给破解了出来,甚至可能死前三个月突然知道了自己毕生的研究方向都是错的......

  这也是理科残酷的一面吧。

  随后徐云顿了顿,又继续说道:

  “肥鱼先祖在设计出这根管子后,由于断章太多被一些读者找上了门,只能带着妻子蒂法和爱丽丝匆匆避难。”

  “因此一直以来,这根真空管都只是个设计图——其实我们这些后人倒也有尝试制作的想法,可惜家道中落,所以一直没有机会进行相关实验。”

  法拉第闻言,亦是深有同感的点了点头。

  同样作为一名码字党,他也没少遇到上门寄刀片的读者。

  不就是五六年才更新一章嘛,有啥好催的呢?

  一章五千多字呢,算上去每天要写三四个字之多......

  随后徐云正了正色,又说道:

  “法拉第先生,按照肥鱼先祖的设计,这根真空管应该可以观测到比较明显的现象。”

  “接着只要在玻璃管中放上小风车,让电流衍生物打到风车上,风车若是会转动,就说明它具备动量。”

  “同时还可以将手深入其中,若是能有温度,就说明它有热能。”

  法拉第一边听一边点头,丝毫没有察觉徐云最后那句话可能产生什么样的后果。

  过了一会儿,他将全部思路都吃透了,便又问道:

  “流程我记下了,不过罗峰同学,这似乎和你说的验证电荷有些出入吧?”

  徐云看了他一眼,摇摇头,说道:

  “您错了,法拉第先生,您难道没有发现一件事吗?”

  法拉第微微一怔:

  “什么事?”

  徐云指了指示意图上的导管,说道

  “按照肥鱼先祖的想法,那些电流的衍生光线,就是带电粒子的粒子流啊.......”

  法拉第和韦伯闻言呆滞片刻,旋即瞳孔骤缩!

  如果此时有显微镜在场,可以发现他们裸露在外的皮肤上,正有一粒粒鸡皮疙瘩在缓缓冒出。

  屋内明明有壁炉供暖,氛围却犹如冰点。

  过了好一会儿。

  法拉第的眼睛才动了动。

  只见他转过头,看向徐云,一字一顿的道:

  “......电磁波?”

  徐云重重点了点头:

  “没错。”

  随后看着一脸震惊的法拉第,徐云又说道:

  “法拉第先生,想要验证荧光的带电属性其实很简单,只要去验证它们在电场磁场中会不会发生偏转就可以了。”

  “我们可以同时施加磁场和电场,使磁场力和电场力相互抵消,令它可以做直线运动,从而求出初始速度。”

  “接着在得到初始速度后,撤掉电场,仅保留磁场。”

  “若光线发生偏转,只要测出射出磁场时的角度,就可以计算出其中粒子的荷质比。”

  法拉第沉默许久,喉咙里隐隐发出了一阵‘嗬嗬’的不明声。

  过了许久。

  他才面色复杂的呼出了一口气浊气,心中感慨万千。

  原来自己曾经离电磁波和电荷,竟然只有一线之隔啊......

  要知道。

  带电粒子会在电场磁场中会偏转,这个概念正是由他本人发现的。

  可惜当时自己为了研究地磁垂直分量的问题,放弃了继续提高真空管精度的想法。

  从而与一个如此重要的成就失之交臂。

  在他对面。

  看着面色阴晴不定的法拉第,徐云的表情有一些唏嘘。

  选修过物理史的读者应该都知道。

  法拉第在1838年研究辉光效应的时候,其实是有观测过真空管在电磁场中的情况的。m.xqikuaiwx.cOm

  但由于真空度问题,荧光最终没有偏转。

  这里用另一个例子解释可能更好理解一点:

  荧光就好像是一队士兵,听到命令后就要立刻前进十米。

  要是在旷野....也就是完全真空的环境中,这队士兵自然会轻松完成命令。

  但若是他们身处人海,每个听到命令的士兵都要推开身边的人群才能向前进,那就非常麻烦了。

  人群密度不高的话可能只是有些困难。

  但人群一旦特别密集,士兵们别说前进了,甚至只能被人群裹挟着漫无目的地四处乱走。

  而真空管中的空气分子就是人群,电场就是荧光偏转的命令。

  实验用的真空管,就相当于不同人群密度的条件。

  法拉第当时7%真空度的真空管依旧相当于闹市,所以荧光并未有波动。

  加强的盖斯勒管则可以达到万分之一真空度,荧光偏转起来就非常容易了。

  更关键的是......

  与原本历史不同。

  在今天之前,徐云已经用光电效应证明了电磁波的存在。

  因此对面电流衍生体这种无色的‘光线’,徐云只是轻轻一个提点,法拉第便想到了它的本质。

  这由电流衍生出来的‘光’既然是电磁波,那么它就肯定具备粒子性。

  具备粒子性,又能在电磁场下偏转......

  这不是带电电荷又是什么?

  当然了。

  后世的读者想必都很清楚。

  这种在真空管内发光的正是阴极射线,原本会在1858年由普吕克发现,由戈尔德施泰因命名。

  它的概念无需赘述,因为它的重要性在于帮助人类完成了早期对于射线的认知,后世的应用范围也很广。

  但其本身并没有多少特别复杂的地方。

  不过比较离谱的一件事是......

  你如果在百度上搜索‘阴极射线是谁发现的’这个问题,出现的答案并不是普吕克。

  而是另一个人:

  约瑟夫·约翰·汤姆逊。

  也就是徐云在副本开始的时候,把老汤错判的那位JJ汤姆逊。

  天可怜见。

  1858年的JJ汤姆逊才tmd两岁啊,何德何能可以发现阴极射线?

  更离谱的是徐云对这个问题提出过校正修复,结果还被百度给打回来了......

  要知道。

  阴极射线的发现也好,命名也罢,都和jj汤姆逊没有半毛钱的关系。

  阴极射线之所以会叫阴极,与它的带电属性无关,而是因为它是一种从阴极发出的射线。

  JJ汤姆逊的贡献是确定了阴极射线带负电的性质,从而计算出了电子比荷,也就是荷质比。

  至于电子的电荷量,则是由密立根油滴实验测出的——不过这个实验是科学史上赫赫有名的丑闻,一个靠着作弊混出来的诺奖。

  当年徐云和小伙伴们在实验室里找油滴找到眼睛痛,数据做出来根本对不上,结果大概是人均挤五十次才出一滴油,说多了都是泪......

  视线再回归现实。

  在法拉第对面。

  徐云在唏嘘的同时,心中也有那么一丝期待。

  接下来,法拉第一定会按照自己的方案前去重复实验。

  也就是架上小风车,外加用手去触摸射线。

  而值得一提的是。

  徐云设计的这根真空管,它的白金基底是可以看做金属板的。

  阴极射线打在金属板上会发生什么,这可是记载在五年级语文下册第八章的故事呢.....

  总而言之。

  虽然有些对不起普吕克和JJ汤姆逊,但结果上确实是件好事——法拉第用比之前还要更坚定的态度拍了拍胸脯,表示自己一定能把名单上的人给忽悠过来。

  也不知道法拉第哪里来的信心,仿佛吃准了那些人一定会赶到剑桥大学。

  就这样。

  在有些微妙的氛围中,徐云完成了和法拉第的交易,互道分别。

  当天晚上。

  一封电报从剑桥大学传到了伦敦。

  再由伦敦传到曼彻斯特...

  伯明翰...

  最后抵达德国,枝开叶散。

  电报的内容只有一个:

  【法拉第病危,速来剑桥!】

  ..........

  注:

  这个月更新了快十万字了,有出月票的同学投一点呗..... 奇快文学为你提供最快的走进不科学徐云更新,第二百七十六章 提前被发现的阴极射线!(7.8K)免费阅读。https://www.xqikuaiwx1.com
章节错误,点此报送(免注册), 报送后维护人员会在两分钟内校正章节内容,请耐心等待